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Thermalization of an electron-phonon system in a nonequilibrium state characterized
by fractal distribution of phonon excitations
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The thermalization of an electron-phonon system in a nonequilibrium state characterized by a fractal distri-
bution of phonon excitations is calculated in a novel way, which takes into account the unusual, inverse
power-law type distribution of phonon energies. The calculations are done from the first principles, based on
a nonequilibrium statistical operator combined with the recently proposed generalized, nonextensive thermo-
statistics. As a result the usual line@tewtonian energy transfer ratégoc—(Tpre) is replaced by a non-
linear ratercf(Tngg), whereq=1 is related to the fractality of the excitation energy distribution. Con-
sequences of this result for a thermal relaxation of the nonequilibrium phonon system are discussed.
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The thermalization of a nonequilibrium electron-phonon  Until recently there has been little guidance on how to
system is of interest in diverse fields of physics, such as thgeneralize the theory of thermalization for an electron-
materials modifications by energetic ion beams or by intens@honon systems obeying non-Gibbsian statistics. The task of
laser irradiation. The modeling of the thermalization is usu-generalization can now be accomplished within the frame-
ally treated with coupled nonlinear heat transport equation¥/0rk of recently proposed generalized nonextenghaallis)

for electron €) and phonon [§) subsystems, where the en- thermostatistic§10,11], where the Gibbs ensemble is re-
placed by a more general Tsallis’ ensemblg(e)

: _ _ : «[1-B(1—q)e] Y@ 1D whereq=1 and B is a general-
scribed by a Newtonian cooling ter@ — (T, —T,) propor-  jzed inverse temperatusactually a Lagrange multiplier ap-
tional to the temperature difference between the Subsysten&aring in the maximization of the entrdpﬂ'he parameter
[1-4]. The Newtonian cooling term is an outcome of all defining the deviation from the ordinary statistics is the Tsal-
established theories of the thermal relaxation of nonequilibtis index g, which is related to the nonextensivitgr fracta-
rium electron-phonon systen$§,6] and its applicability in lity) of the systeni11]. In the limitq— 1 the ordinary Gibbs
describing the nonequilibrium states has not been seriousklynsemble is obtained. Because the Tsallis’ ensemble bridges
guestioned, although the restrictions of the theory are welthe BG distribution and inverse power-law distributions, it is
known[6]. adapted in describing the statistics of the thermalizing cas-
Fractal or inverse power-law type distributions of phononcade, where typical values of Tsallis index fall between the
excitations are of interest in modeling the thermalization oflimits 1.5<qg=1. Of course, even the Tsallis’ statistics is too
collision cascades in ion bombarded solids, where a microidealized to give a completely realistic description of the
Scopic distribution of energies of lattice ions deviate Substanmermalization of the collision Cascade, but it iS, neverth6|ess,
tially from the thermal or Boltzmann-Gibb@®G) distribu- ~ &n improvement over the all too restrictive BG statistics. In
tion [7,8]. The deviations are apparent even at a stage, whef®is study the established results_ of th(_a 'Fhermallzatlon of
all atoms are moving7] and the atomistic motion is ex- eIectron.-;,)honc_)n.system are rederived within the framework
pected to be correlated, giving rise to localized phonon-typé’f, Tsallis statistics. The exposition is brief, and many de_—
excitations. The relevance of phonon-type excitations in th ails, not of immense interest for the present study, are omit-

thermalization of cascade is indirectly supported by the no-eoI by gving a rgference to original works, where a more
. . - complete discussion can be found.
tion that the thermally activated radiation enhanced pro- : )

The microscopic model of the electron-phonon system

cesses in metals correlate strongly with the electron-phonon i N
coupling strengtt(for a more detailed discussion, modeling 'S _characterized by a Hamiltoniard =He+H,+ Uy,
and comparisons with experiments, see REf<2)). Instead wherehelectron Tand phoAnon systemf are descrl_bed by
of being described by the BG distribution the energy distri-'ms He=2xe@ @ and Hy=2qhwobghq, respective-
bution of atoms fits better to an inverse power law of a formly, and coupled by the Fdich-type interaction U
p(e)xe *, where ka<2 [7,8]. This is to be expected, =3 Mq(bg+ biQ)alak_Q [6]. The transition matrixMq
because the thermalization can be treated as an energy shgives the probability for a scattering process, where the mo-
ing branching process, which has much in common with anentum and energy of the electron are changed fkoto
fragmentationlike behavior, where a self-simildnverse  k—Q ande to €,_q, respectively, accompanied by the cre-
power-law distribution of fragments is producgd—9]. ation or destruction of the phonaofor density fluctuation
with energyn{lo. The energy current operator between the
subsystems in the nonequilibrium state is obtained from the
*Electronic address: ismo.koponen@helsinki.fi quantum mechanical equation of motion

ergy transfer rateQ from the phonons to electrons is de-
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H] operators, which depend ok? or higher order terms. Be-
cause] is of the ordelO(A?) itself, we can neglect the terms
:(iﬁ)’lz Mq(€x— €k—q)(bg+ bJ[Q)alak_Q. (1) O(AZ) in the expansion, when we are interested in dilute
Qk excitations only(this assumption is also behind all the ki-
. _ netic formulations as, e.g., in Rd6]). In practice, this as-
The energy transfer ra®@ is then the expectation value of sumption greatly simplifies the calculations by retaining the
operator] over the suitable statistical ensemble described bstructure of the ordinary Kubo identity in E¢p). Performing

density operatop, which can be constructed according to then the integration ovex one obtains
Zubarev's theory[12,13. This method based on the non-
equilibrium statistical operator is preferred instead of the ap-
proach based on the kinetic equations, because it is more
transparent with respect to the central approximations needed
to reach the final results. The generalization of the Zubarev's (ex— €x—q) (€ — € —qr) ~q A
nonequilibrium statistical operator compatible with Tsallis’ X Bel€c— €c—o) + Boliw Tripg(A)
statistics is now given by ¢ Q PrER

J=(it) " [Hp+Uep,

. 0
Q=—(ih)’1limf dte“(,b’e—ﬁp)l% > MgMg
— 0 , kI’QI

e—0

o ) o X[(bg+b'g)atac_q.eM (b +b )
po(A+B)=Z, [1-(1-a)(A+B)] 97D (2 ; o
Xay, g _qe HT), (6)
The part of the operator which defines the equilibrium is
A= Bo(He—uNg)+ B,H,, where the inverse temperatures where T{---} is actually a temperature ordered Green's
of the subsystems ay, ,=1/kT, ,. The chemical potential function (for technical details in similar calculations see
of the fermion system with the number operalftg: alak is Refs.[12,13). Itis now possible to proceed in the usual way
taken to bew=Eg. The part [12,13, by pairing the operators according to Wick’s theo-
rem, neglecting the interaction terr‘ﬁlep in the time-
L 0 ot A evolution operators, performing the integration and then tak-
B= I'mo _wdte (Be= Bp)I(V) 3 ing the limite — 0. In this procedure, the inverse temperature
o difference B.—pB, is canceled by the denominator

of the density operator is due to the nonequilibrium energy-Be(€k— €k-q) T Bpfiwg], when the energy conservation

currentd(t) (in the Heisenberg representatiofhis expres- <X k-Q fraag is taken into account. The final result, after
o . ) : o rearranging the terms in the remaining double sum, can be
sion is valid for a weak interaction but for an arbitrarily large . ;
. " T written in a form
temperature differencgl2]. The partition function is given

now by Z,(A+B)=Tr[1-(1-q)(A+B)] Y@ Y, where _ A

g defines the degree of fractality gnonextensivity of the Q=- 72 oMol *fe(1—fr_o)[Ngd(ex— €k—q
system[14]. In the limit g—1 density operator takes the kQ

usual formp=Z~tex —A—B] corresponding to the Gibbs +Hiwg) — (1+NQ) 8 e g~ hwo)], 7)
ensemble.

The energy transfer rat@ is the expectation value of the where f, and ng are occupation probabilities of quantum
operatord, and in the Tsallis’ statistics this expectation value many-body systems for fermions and bosons, respectively, to
is given by[14] be calculated in the Tsallis’ statistics. However, at present

the exact expressions in closed form for these distributions
QE<j>qETr[j,gg(,Z\+ B)]. (4)  are not known, and results only in the form of Hillhorst
integral transformations are availabl&6]. Fortunately, at
A crucial part of the calculation is now a decomposition of this stage of the calculation, it is enough to be able to prove
the statistical operatqr,(A+B) in a similar way as done by that also in the Tsallis’ statistics, when deviations from BG
the Kubo identity when the Gibbs ensemble is ugsee, Statistics are moderate amp~1, the well-known relations
e.g., Refs[12,13). The decomposition in the Tsallis’ statis- [(€*7 @)~ f(e)~hwd(e—Ef) and flexhw)[1—f(e)]

tics can be accomplished by using generalized Kubo identi=N(@)[f(e) —f(e*Aw)]  hold. ~ This  can  be
ties due to Rajagop4lL5], yielding done, for example, by using mean fieldlike expansions for

fy and ng derived by Byukkilig, Demirhan, and
U o Gulec [17] (however, for criticism see[16,18§). With
Jpg(A)f dhpg ANA)Bypg(NA) |, (5  the above relations the leading contribution of the
0 energy transfer rate can be obtained by following the
method of Allen [6], first passing in the continuum
limit and then introducing the electron-phonon spectral
function  a®F(w)=[AN(EF)/2] 'Sy [Mgl?8(wq— o)

Q=qTr

where B, =[1-\(1—q)A] B[1-A(1—-q)A] L. At the
limit g—1, Eq. (5) becomes identical with the result ob-
tained from the usual Kubo identiicompare with calcula- X 8(e ; 3

. . . x —€) (e —e) (also known as Eliashberg’s func-
tions in Refs.[12,13). Th_e operator pf?‘:uct d?pi:‘d'ﬂg on tion), wherek—k’ =Q andN(Eg) is the density of states of
A can be expanded in the formpg(AA)Bypg(AA)  the electrons at the Fermi level. Then Eg). can be castin a
~e M[1+0(A?)]B[1- O(A?)]eM, whereO(A?) denotes form
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. ) ) tion models[1,3]. Under these assumptions, the cooling rate
Q= _ZWN(EF)f doa’F(w)(hw)n(e,T)—n(e,Te)].  of the phonon system is simply due to electron-phonon cou-
(8)  pling and it is given by T, /dt)e,=Q/C,, whereCy is the
heat capacity of the phonon system with Tsallis inapx
n roximate exoression for th h distributi Because we are now concerned with a model of independent,
an approximate expression 1o € _phonon distribution i, 64 oscillators at a high temperature limit, the existing

n(w,T). A recent work of Tsallist al.[11] on a generalized : . .
Bose-Einstein distribution in a nonextensive statistics pro—C"JIICUIatIOnS for a heat capacity of one oscilljth,20 can

vides for a phonon distribution the following convenient ap_gigrsbeedro?fs Su%;id;r?dcza-;(;vg;é??otrhtirieerqgatth(caa:)eascuitl;sadrge to

In a further evaluation of E(8) it is now necessary to adopt

proximation , . ; .
adopted. The series they give for the heat capaaty p.
+e7X% 1801 in Ref.[19]) can be approximated by corresponding
n(x)=nge(x)(1—e™)9"H 1+(1-q)x 1o~ integrals, yielding for one oscillator at high temperatures
quc(z—q)qu‘q [21]. This result suggests that the heat ca-
_x 1+3e™ ) ) pacity can be approximated bfq~Cpp(2—0)%T; 9,
2 (1-e7 7] whereCpp=3NKk is the Dulong-Petit heat capacity. The es-

1 i timate has an advantage in that it reproduces the temperature
wherengg(x) =[exp)—1]"%, with x=fiw/kgT, is the usual  genendence of the heat capacity of the classical ideal gas in

Bose-Einstein distribution. This distribution has an advan-the Tsallis statistic$22]. By using it, we can write down the
tage of being representable in a form of converging Se”estEmperature relaxation rate of the phonon system as

which allows us to find an approximation @also in a form &Tp/&t)ep= _1—1’-‘[-"’2)q—1’ where the rate coefficient

of converging series. It becomes now evident, that although, 392 a7 ; .

Eq. (8) is formally identical to the Allen’s Eq(10), its high =To[Q°Q%(2—0q)"] s expressed |n2terms of the cor-
temperature expansion is quite different. Performing the ex[espondlng coefficient’o = WﬁN(EF)M“’ >/(C_:D'?/k) for
pansion in terms<1, changing in dimensionless variables the electron-phonon system obeying BG statistics. Values of

T=T/®p, where@y, is the Debye temperature, the leading lF;(éfcz[ilztjuI\;avtg(i]faoreotrﬁlnaeryr/“;r;talI|c S.iﬁtznr:;?;e gtllven, el._g., n
contribution of the energy transfer rate is obtained e ve thus up wi lestly nonfinear

cooling rate instead of the usual linear rate

_ o 1 1 (0T p/3t)ep=—ToT,. The ordinary linear result is now un-

Q~-— wﬁZN(EF)wDXqWZ)(Tg—Tg)( 1-Cp5 r) : derstood to be the limiting case fqr— 1, and thus valid only
TpTe in a completely thermalized stage.

The validity of the derived heat transfer rafeand the
wherewp, is the Debye frequency. The generalized couplingtemperature relaxation raté{,/dt), are both restricted to
strength is defined a3q<w2>:(93—q/92))\<w2>, where small deviations from BG statistics, whep=1. This limits
M ®?) is the standard coupling strength factor defined aghe applicability of the results at the early stage of the cas-
in Ref. [6]. The dimensionless(generalizell moments cade thermalization, where values as larggad.5 may be
Q—rzzfng[QZF(Q)/Q]Qr, where Q= w/wp, appearing attained. At present the direct verification of the energy
in the definition of the coupling strength are only numericaltransfer or cooling rates for the nonequilibrium phonon sys-
correction factors which can be calculated once the phonofeém in collision cascades is not possible, because the ther-
spectrum is known. The coefficien€=[(1—q)+q(3q malization is over in picosecond$,2]. Therefore, the value
—1)/2]Wn the second term in the high temperatureOf the results must be judged on the basis of their theoretical

expansion is also defined by these dimensionless momenigonsistency with the supposed initial conditions. In any case,
At the limit g—1 Eq. (10) is identical with the Allen’s re- it is interesting to see, how the adoption of the statistical
sults [6], but in general casg>1, which means that the €nsemble, where the most restrictive assumptions are known
energy transfer rate is enhanced in comparison with the staio culminate, has so crucial a role in determining the energy
dard linear result. The energy transfer rfdeis the main t.ransfer rate. It is now seen, how the Newtonian cooling term
result of this study, and it is directly applicable in those Qx—(T,—Ty) is basically a consequence of the restrictions
analytical studies and molecular dynamics simulationsimposed by the adopted ensembiete that the present deri-
where energy transfer from phonons to electrons are incowation demonstrates also how the Newtonian cooling term is
porated as a part of the model calculatipfs-3]. However, obtained without assuming a small temperature difference
deviations from the BG statistics must not be too large.  between the subsystendVe should be reminded that the
Finally, we estimate the cooling rate of the phonon systenfractal distribution of phonon excitations studied here also
initially heated up by the impact of an energetic ion. Forrepresents an idealization. This idealized system is not meant
simplicity, the electronic subsystem is treated as a heat sinto replace the models based on the BG statistics but instead
with T,<T,, and the contribution of the ionic heat conduc- to give a complementary point of view, which gives more
tion on the cooling is ignored, which are reasonable approxiinsight on the role of the anomalous statistics in the thermal-
mations for large and sparse cascafds However, in the ization problem. A realistic model should probably describe
modeling aiming at accurate predictions, the contribution ofthe relaxation by a sequence of Tsallis’ ensembles starting
the heat conduction on the cooling must be taken into achitially from a value g~1.5 and ending up with a value
count, but then it is best to deal with the established simulag=1 (see, e.g., results in Reff7]), possibly by means of

(10
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time dependent parametgrdetermined by the dynamics of
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sumed validity of the Boltzmann-Gibbs distributidine.,

the collision cascade. A similar situation arises in the evolucompletely thermalized stateDue to the fractality of the
tion of cascade geometry, where initial_ly ffactal cascadephonon distribution, the rates of the energy transfer and the
evolves towards space filling structure with time dependentemperature relaxation of the phonon system are enhanced in

fractal index[8,23].

comparison with the standard results. The results demon-

In summary, in this paper the generalized energy transfegirate the profound effects of the assumptions contained in
rate from phonons to electrons is derived for systems, whergye choice of the statistical ensemble.

phonon excitations has an anomalous, inverse power-law

type energy spectrum. This model has potential applications The author wishes to thank Professor C. Tsallis, Dr. P.
in the description of the thermalizing collision cascades ofPury, and Dr. G. Raggio for comments and helpful corre-
energy sharing branching processes. The generalized rate diondence. J. Peisa is acknowledged for his kind help in
rived here has a theoretical basis reaching beyond the asross-checking part of the calculations.

[1] M.W. Finnis, P. Agnew, and A.J.E. Foreman, Phys. Re¥4B
567 (1991); A. Caro, Radiat. Eff126, 15(1993; A. Caro and
M. Victoria, Phys. Rev. A40, 2287 (1989; C.P. Flynn and
R.S. Averback, Phys. Rev. B8, 7118(1988.

[2] I. Koponen, Phys. Rev. B7, 14 011(1993; I. Koponen and
M. Hautala, Nucl. Instrum. Methods 83, 374(1994); 90, 396
(1994; 69, 182 (1992; I. Koponen, J. Appl. Phys72, 1194
(1992.

[3] H. Hkkinen and U. Landmann, Phys. Rev. Leftl, 1023
(1993; J.J. Klossika, U. Gratzke, M. Vicanek, and G. Simon,
Phys. Rev. B54, 10 227(1996.

[4] M. Mihailidi, Q. Xing, K.M. Yoo, and R.R. Alfano, Phys. Rev.

[10] C. Tsallis, J. Stat. Phy&2, 479(1988; E.M.F. Curado and C.

Tsallis, J. Phys. A4, L69 1991.

[11] C. Tsallis, S.V.F. Levy, A.M.C Souza, and R. Maynard, Phys.

Rev. Lett.75, 3589(1995.

[12] D.N. Zubarev, Nonequilibrium Statistical Thermodynamics

(Consultants Bureau, New York, 1974

[13] L.A. Pokrovskii, Dokl. Akad. Nauk. SSSR82 317 (1969

[Sov. Phys. Dokl13, 911(1969].

[14] C. Tsallis, F.S. Saarreto, and E.D. Loh, Phys. Rev. &2,

1447(1995.

[15] A.K. Rajagopal, Phys. Rev. Letf6, 3469(1996.
[16] S. Curilef, Z. Phys. BLOO, 433(1996.

B 49, 3207(19949; R.H.M. Groeneveld, R. Sprik, and A. La- [17] F. Blyukkilig, D. Demirhan, and A. Geg, Phys. Lett. A197,

gendijk, ibid. 45, 5079 (1992; W.S. Fann, R. Storz, HW.K.
Tom, and J. Bokor, Phys. Rev. Le€8, 2834(1992.

[5] M.I. Kaganov, I.M. Lifshitz, and L.V. Tanatarov, Zh.k&p.
Teor. Fiz.31, 232(1956 [Sov. Phys. JETR, 173(1957]; S.I.
Anisimov, B.L. Kapeliovich, and T.L. Perelmanibid. 66,
776 (19749 [ibid. 39, 375(1974].

[6] P.B. Allen, Phys. Rev. Let69, 1460(1987.

[7] K.T. Waldeer and H.M. Urbassek, Physical®&6, 325(1991).

[8] N.R. Corngold, Phys. Rev. 89, 2126(1989.

[9] E.D. MacGrady and R.M. Ziff, Phys. Rev. Letg8 892
(1987.

209 (1995.

[18] F. Pennini, A. Plastino, and A.R. Plastino, Phys. Lett2@8

309 (1995.

[19] G.R. Guerberoff, P.A. Pury, and G.A. Raggio, J. Math. Phys.

37, 1790(1996.

[20] E.P. da Silva, C. Tsallis, and E.M.F. Curado, Physica9s,

137(1993.

[21] G.A. Raggio and P.A. Purfprivate communication
[22] A.R. Plastino, A. Plastino, and C. Tsallis, J. Phys2A 5707

(1994

[23] F. Kun and G. Bardos, Phys. Rev.5B, 2639(1994).



