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Thermalization of an electron-phonon system in a nonequilibrium state characterized
by fractal distribution of phonon excitations

Ismo Koponen*

Department of Physics, University of Helsinki, P.O. Box 9, FIN-00014 Helsinki, Finland
~Received 5 December 1996!

The thermalization of an electron-phonon system in a nonequilibrium state characterized by a fractal distri-
bution of phonon excitations is calculated in a novel way, which takes into account the unusual, inverse
power-law type distribution of phonon energies. The calculations are done from the first principles, based on
a nonequilibrium statistical operator combined with the recently proposed generalized, nonextensive thermo-

statistics. As a result the usual linear~Newtonian! energy transfer rateQ̇}2(Tp2Te) is replaced by a non-

linear rateQ̇}2(Tp
q2Te

q), whereq>1 is related to the fractality of the excitation energy distribution. Con-
sequences of this result for a thermal relaxation of the nonequilibrium phonon system are discussed.
@S1063-651X~97!13506-1#
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The thermalization of a nonequilibrium electron-phon
system is of interest in diverse fields of physics, such as
materials modifications by energetic ion beams or by inte
laser irradiation. The modeling of the thermalization is us
ally treated with coupled nonlinear heat transport equati
for electron (e) and phonon (p) subsystems, where the en

ergy transfer rateQ̇ from the phonons to electrons is d

scribed by a Newtonian cooling termQ̇}2(Tp2Te) propor-
tional to the temperature difference between the subsyst
@1–4#. The Newtonian cooling term is an outcome of a
established theories of the thermal relaxation of nonequ
rium electron-phonon systems@5,6# and its applicability in
describing the nonequilibrium states has not been serio
questioned, although the restrictions of the theory are w
known @6#.

Fractal or inverse power-law type distributions of phon
excitations are of interest in modeling the thermalization
collision cascades in ion bombarded solids, where a mic
scopic distribution of energies of lattice ions deviate subst
tially from the thermal or Boltzmann-Gibbs~BG! distribu-
tion @7,8#. The deviations are apparent even at a stage, w
all atoms are moving@7# and the atomistic motion is ex
pected to be correlated, giving rise to localized phonon-t
excitations. The relevance of phonon-type excitations in
thermalization of cascade is indirectly supported by the
tion that the thermally activated radiation enhanced p
cesses in metals correlate strongly with the electron-pho
coupling strength~for a more detailed discussion, modelin
and comparisons with experiments, see Refs.@1,2#!. Instead
of being described by the BG distribution the energy dis
bution of atoms fits better to an inverse power law of a fo
p(e)}e2a, where 1<a<2 @7,8#. This is to be expected
because the thermalization can be treated as an energy
ing branching process, which has much in common wit
fragmentationlike behavior, where a self-similar~inverse
power-law! distribution of fragments is produced@7–9#.
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Until recently there has been little guidance on how
generalize the theory of thermalization for an electro
phonon systems obeying non-Gibbsian statistics. The tas
generalization can now be accomplished within the fram
work of recently proposed generalized nonextensive~Tsallis!
thermostatistics@10,11#, where the Gibbs ensemble is re
placed by a more general Tsallis’ ensemblep(e)
}@12b(12q)e#21/(q21), whereq>1 andb is a general-
ized inverse temperature~actually a Lagrange multiplier ap
pearing in the maximization of the entropy!. The parameter
defining the deviation from the ordinary statistics is the Ts
lis indexq, which is related to the nonextensivity~or fracta-
lity ! of the system@11#. In the limit q→1 the ordinary Gibbs
ensemble is obtained. Because the Tsallis’ ensemble brid
the BG distribution and inverse power-law distributions, it
adapted in describing the statistics of the thermalizing c
cade, where typical values of Tsallis index fall between
limits 1.5<q<1. Of course, even the Tsallis’ statistics is to
idealized to give a completely realistic description of t
thermalization of the collision cascade, but it is, neverthele
an improvement over the all too restrictive BG statistics.
this study the established results of the thermalization
electron-phonon system are rederived within the framew
of Tsallis’ statistics. The exposition is brief, and many d
tails, not of immense interest for the present study, are om
ted by giving a reference to original works, where a mo
complete discussion can be found.

The microscopic model of the electron-phonon syst
is characterized by a HamiltonianĤ5Ĥe1Ĥp1Ûep ,
where electron and phonon systems are described
terms Ĥe5(kekak

†ak and Ĥp5(Q\vQbQ
†bQ , respective-

ly, and coupled by the Fro¨hlich-type interaction Ûep

5(Q,kMQ(bQ1b2Q
† )ak

†ak2Q @6#. The transition matrixMQ
gives the probability for a scattering process, where the m
mentum and energy of the electron are changed fromk to
k2Q andek to ek2Q , respectively, accompanied by the cr
ation or destruction of the phonon~or density fluctuation!
with energy\VQ . The energy current operator between t
subsystems in the nonequilibrium state is obtained from
quantum mechanical equation of motion
7759 © 1997 The American Physical Society
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Ĵ5~ i\!21@Ĥp1Ûep ,Ĥ#

5~ i\!21(
Q,k

MQ~ek2ek2Q!~bQ1b2Q
† !ak

†ak2Q . ~1!

The energy transfer rateQ̇ is then the expectation value o
operatorĴ over the suitable statistical ensemble described
density operatorr̂, which can be constructed according
Zubarev’s theory@12,13#. This method based on the non
equilibrium statistical operator is preferred instead of the
proach based on the kinetic equations, because it is m
transparent with respect to the central approximations nee
to reach the final results. The generalization of the Zubare
nonequilibrium statistical operator compatible with Tsall
statistics is now given by

r̂q~Â1B̂!5Zq
21@ 1̂2~12q!~Â1B̂!#21/~q21!. ~2!

The part of the operator which defines the equilibrium
Â5be(Ĥe2mN̂e)1bpĤp , where the inverse temperature
of the subsystems arebe,p51/kTe,p . The chemical potentia
of the fermion system with the number operatorN̂e5ak

†ak is
taken to bem5EF . The part

B̂5 lim
«→0

E
2`

0

dte«t~be2bp!Ĵ~ t ! ~3!

of the density operator is due to the nonequilibrium ene
currentĴ(t) ~in the Heisenberg representation!. This expres-
sion is valid for a weak interaction but for an arbitrarily larg
temperature difference@12#. The partition function is given
now by Zq(Â1B̂)5Tr@ 1̂2(12q)(Â1B̂)#21/(q21), where
q defines the degree of fractality or~nonextensivity! of the
system@14#. In the limit q→1 density operator takes th
usual formr̂5Z21exp@2Â2B̂# corresponding to the Gibb
ensemble.

The energy transfer rateQ̇ is the expectation value of th
operatorĴ, and in the Tsallis’ statistics this expectation val
is given by@14#

Q̇[^ Ĵ&q[Tr@ Ĵr̂q
q~Â1B̂!#. ~4!

A crucial part of the calculation is now a decomposition
the statistical operatorr̂q(Â1B̂) in a similar way as done by
the Kubo identity when the Gibbs ensemble is used~see,
e.g., Refs.@12,13#!. The decomposition in the Tsallis’ statis
tics can be accomplished by using generalized Kubo ide
ties due to Rajagopal@15#, yielding

Q̇5qTrF Ĵr̂q
q~Â!E

0

1

dlr̂q
2q~lÂ!B̂lr̂q

q~lÂ!G , ~5!

where B̂l5@ 1̂2l(12q)Â#21B̂@ 1̂2l(12q)Â#21. At the
limit q→1, Eq. ~5! becomes identical with the result ob
tained from the usual Kubo identity~compare with calcula-
tions in Refs.@12,13#!. The operator product depending o
l can be expanded in the formr̂q

2q(lÂ)B̂lr̂q
q(lÂ)

'e2lÂ@ 1̂1O(Â2)#B̂@ 1̂2O(Â2)#elÂ, whereO(Â2) denotes
y

-
re
ed
’s

y

f

ti-

operators, which depend onÂ2 or higher order terms. Be
causeĴ is of the orderO(Â2) itself, we can neglect the term
O(Â2) in the expansion, when we are interested in dilu
excitations only~this assumption is also behind all the k
netic formulations as, e.g., in Ref.@6#!. In practice, this as-
sumption greatly simplifies the calculations by retaining t
structure of the ordinary Kubo identity in Eq.~5!. Performing
then the integration overl one obtains

Q̇52~ i\!21 lim
«→0

E
2`

0

dte«t~be2bp!(
k,Q

(
k8,Q8

MQMQ8

3
~ek2ek2Q!~ek82ek82Q8!

be~ek2ek2Q!1bp\vQ
Tr$r̂q

q~Â!

3@~bQ1b2Q
† !ak

†ak2Q ,e
iHt /\~bQ81b2Q8

†
!

3ak8
† ak82Q8e

2 iHt /\#%, ~6!

where Tr$•••% is actually a temperature ordered Green
function ~for technical details in similar calculations se
Refs.@12,13#!. It is now possible to proceed in the usual wa
@12,13#, by pairing the operators according to Wick’s the
rem, neglecting the interaction termÛep in the time-
evolution operators, performing the integration and then t
ing the limit«→0. In this procedure, the inverse temperatu
difference be2bp is canceled by the denominato
@be(ek2ek2Q)1bp\vQ#, when the energy conservatio
ek2ek2Q5\vQ is taken into account. The final result, aft
rearranging the terms in the remaining double sum, can
written in a form

Q̇52
4p

\ (
k,Q

\vQuMQu2f k~12 f k2Q!@nQd~ek2ek2Q

1\vQ!2~11nQ!d~ek2ek2Q2\vQ!#, ~7!

where f k and nQ are occupation probabilities of quantu
many-body systems for fermions and bosons, respectively
be calculated in the Tsallis’ statistics. However, at pres
the exact expressions in closed form for these distributi
are not known, and results only in the form of Hillhor
integral transformations are available@16#. Fortunately, at
this stage of the calculation, it is enough to be able to pro
that also in the Tsallis’ statistics, when deviations from B
statistics are moderate andq'1, the well-known relations
f (e6\v)2 f (e)'\vd(e2EF) and f (e6\v)@12 f (e)#
'n(v)@ f (e)2 f (e6\v)# hold. This can be
done, for example, by using mean fieldlike expansions
f k and nQ derived by Bu¨yükkılıç, Demirhan, and
Gülec @17# ~however, for criticism see@16,18#!. With
the above relations the leading contribution of t
energy transfer rate can be obtained by following t
method of Allen @6#, first passing in the continuum
limit and then introducing the electron-phonon spect
function a2F(v)5@\N(EF)/2#21(k,k8uMQu2d(vQ2v)
3d(ek 2e)d(ek8 2e! ~also known as Eliashberg’s func
tion!, wherek2k85Q andN(EF) is the density of states o
the electrons at the Fermi level. Then Eq.~7! can be cast in a
form
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Q̇522pN~EF!E dva2F~v!~\v!2@n~v,TL!2n~v,Te!#.

~8!

In a further evaluation of Eq.~8! it is now necessary to adop
an approximate expression for the phonon distribut
n(v,T). A recent work of Tsalliset al. @11# on a generalized
Bose-Einstein distribution in a nonextensive statistics p
vides for a phonon distribution the following convenient a
proximation ,

n~x!5nBE~x!~12e2x!q21H 11~12q!xF11e2x

12e2x

2
x

2

113e2x

~12e2x!2G J , ~9!

wherenBE(x)5@exp(x)21#21, with x5\v/kBT, is the usual
Bose-Einstein distribution. This distribution has an adva
tage of being representable in a form of converging ser
which allows us to find an approximation toQ̇ also in a form
of converging series. It becomes now evident, that altho
Eq. ~8! is formally identical to the Allen’s Eq.~10!, its high
temperature expansion is quite different. Performing the
pansion in termsx!1, changing in dimensionless variable
T̃5T/QD , whereQD is the Debye temperature, the leadin
contribution of the energy transfer rate is obtained

Q̇'2p\2N~EF!vDlq^v
2&~ T̃p

q2 T̃e
q!S 12C

1

12

1

T̃pT̃e
D ,
~10!

wherevD is the Debye frequency. The generalized coupl
strength is defined aslq^v

2&5(V̄32q/V 2̄)l^v2&, where
l^v2& is the standard coupling strength factor defined
in Ref. @6#. The dimensionless~generalized! moments
V r̄52*0

`dV@a2F(V)/V#V r , whereV5v/vD , appearing
in the definition of the coupling strength are only numeric
correction factors which can be calculated once the pho
spectrum is known. The coefficientC5@(12q)1q(3q
21)/2#V4̄/V2̄ in the second term in the high temperatu
expansion is also defined by these dimensionless mom
At the limit q→1 Eq. ~10! is identical with the Allen’s re-
sults @6#, but in general caseq.1, which means that the
energy transfer rate is enhanced in comparison with the s
dard linear result. The energy transfer rateQ̇ is the main
result of this study, and it is directly applicable in tho
analytical studies and molecular dynamics simulatio
where energy transfer from phonons to electrons are in
porated as a part of the model calculations@1–3#. However,
deviations from the BG statistics must not be too large.

Finally, we estimate the cooling rate of the phonon syst
initially heated up by the impact of an energetic ion. F
simplicity, the electronic subsystem is treated as a heat
with Te!Tp , and the contribution of the ionic heat condu
tion on the cooling is ignored, which are reasonable appro
mations for large and sparse cascades@2#. However, in the
modeling aiming at accurate predictions, the contribution
the heat conduction on the cooling must be taken into
count, but then it is best to deal with the established simu
n
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tion models@1,3#. Under these assumptions, the cooling ra
of the phonon system is simply due to electron-phonon c

pling and it is given by (]Tp /]t)ep5Q̇/Cq , whereCq is the
heat capacity of the phonon system with Tsallis indexq.
Because we are now concerned with a model of independ
localized oscillators at a high temperature limit, the existi
calculations for a heat capacity of one oscillator@19,20# can
be used as a guidance. Towards this end the results du
Guerberoff, Pury, and Raggio@19# for the heat capacity are
adopted. The series they give for the heat capacity~on p.
1801 in Ref.@19#! can be approximated by correspondin
integrals, yielding for one oscillator at high temperatur
Cq}(22q)qT12q @21#. This result suggests that the heat c

pacity can be approximated byCq'CDP(22q)qT̃p
12q ,

whereCDP53Nk is the Dulong-Petit heat capacity. The e
timate has an advantage in that it reproduces the tempera
dependence of the heat capacity of the classical ideal ga
the Tsallis’ statistics@22#. By using it, we can write down the
temperature relaxation rate of the phonon system

(] T̃p /]t)ep52G T̃p
2q21 , where the rate coefficien

G5G0@V32q/V2(22q)q# is expressed in terms of the co
responding coefficientG05p\N(EF)l^v2&/(CDP /k) for
the electron-phonon system obeying BG statistics. Value
G0 calculated for ordinary metallic systems are given, e.g.
Ref. @2#. We have thus ended up with a manifestly nonline
cooling rate instead of the usual linear ra

(] T̃p /]t)ep52G0T̃p . The ordinary linear result is now un
derstood to be the limiting case forq→1, and thus valid only
in a completely thermalized stage.

The validity of the derived heat transfer rateQ̇ and the
temperature relaxation rate (]Tp /]t)ep are both restricted to
small deviations from BG statistics, whenq'1. This limits
the applicability of the results at the early stage of the c
cade thermalization, where values as large asq'1.5 may be
attained. At present the direct verification of the ener
transfer or cooling rates for the nonequilibrium phonon s
tem in collision cascades is not possible, because the t
malization is over in picoseconds@1,2#. Therefore, the value
of the results must be judged on the basis of their theoret
consistency with the supposed initial conditions. In any ca
it is interesting to see, how the adoption of the statisti
ensemble, where the most restrictive assumptions are kn
to culminate, has so crucial a role in determining the ene
transfer rate. It is now seen, how the Newtonian cooling te

Q̇}2(Tp2Te) is basically a consequence of the restrictio
imposed by the adopted ensemble~note that the present der
vation demonstrates also how the Newtonian cooling term
obtained without assuming a small temperature differe
between the subsystems!. We should be reminded that th
fractal distribution of phonon excitations studied here a
represents an idealization. This idealized system is not m
to replace the models based on the BG statistics but ins
to give a complementary point of view, which gives mo
insight on the role of the anomalous statistics in the therm
ization problem. A realistic model should probably descri
the relaxation by a sequence of Tsallis’ ensembles star
initially from a value q'1.5 and ending up with a value
q51 ~see, e.g., results in Ref.@7#!, possibly by means of
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time dependent parameterq determined by the dynamics o
the collision cascade. A similar situation arises in the evo
tion of cascade geometry, where initially fractal casca
evolves towards space filling structure with time depend
fractal index@8,23#.

In summary, in this paper the generalized energy tran
rate from phonons to electrons is derived for systems, wh
phonon excitations has an anomalous, inverse power
type energy spectrum. This model has potential applicati
in the description of the thermalizing collision cascades
energy sharing branching processes. The generalized rat
rived here has a theoretical basis reaching beyond the
n,
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sumed validity of the Boltzmann-Gibbs distribution~i.e.,
completely thermalized state!. Due to the fractality of the
phonon distribution, the rates of the energy transfer and
temperature relaxation of the phonon system are enhance
comparison with the standard results. The results dem
strate the profound effects of the assumptions containe
the choice of the statistical ensemble.
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